
Taras Shevchenko National University of Kyiv

1ST WORLD LOGIC DAY
JANUARY 14, 2019

Logic and its Applications
The workshop

Book of Abstracts

Kyiv

Logical Theory for Cyber-Physical Systems: Current State and Outlook

Sergiy Bogomolov
The Australian National University

bogom.s@gmail.com

An Algebraic Explication of Data Structures

Ioachim Drugus
Institute of Mathematics and Computer Science, Chisinau, Moldova

ioachim.drugus@math.md

Data structures are treated here as “constructed objects”, or “objects obtained in
result of a process of construction”. The approach to data structures developed in
current research brings into focus the “facture” of these objects, i.e. the manner
how these are built (or “constructed”) by applying various “construction operations”.
Accordingly this aspect is explicated here by “aggregate algebras” earlier introduced
by the author.

A generalized Boolean algebra (GBA) is defined here as a lattice G with a
least element 0, such that for any g in G, the sub-lattice induced over the segment

[0, g] (i.e. the set {x G| 0 ≤ x ≤ g}) is a Boolean algebra. It is proved that the class of
so defined GBAs coincides with the class of algebras satisfying the Stone’s axioms of
GBA. Also, an alternative axiomatization of this class is presented.

The intuition behind GBA adopted here is explained in this section as follows.
GBAs are treated as “algebras of quantities measured by comparison (in particular,
comparison with an etalon)”. Such quantities are results of measuring parts of a
whole (in particular, with the whole) and should be treated “mereologically”. Since
such quantities are infinitely divisible, GBAs serving as algebras of quantities cannot
reflect the process of construction. Accordingly, GBAs are treated here as “carriers”
or “supports” of data structures.

An aggregate algebra A is a GBA, equipped with two operations called here
“construction operations”, the two symbols of which are a “superfix” unary
operator “o”, and an “infix” binary operator “∘”, both “invertible” in the sense that
the universal closures of next formulas hold:

xo = yo x = y,

x ∘ y = x ∘ y’ x = x & y = y.
The intuition behind a “construction operation” is that such an operation “keeps the
values of arguments within the result of its application”, or in other words, that this
operation “preserves parthood”. This intuition is reflected in the above formulas.

2

mailto:bogom.s@gmail.com
mailto:ioachim.drugus@math.md

The intuitive treatment by David Lewis of sets as “superstructures over the
Matter” presupposes the treatment of sets as (elementary) data structures, and is
compliant with the approach to data structures used in current research.

Sources of Contradictions in Zeno’s Paradoxes “Arrow” and “Dichotomy”

Igor Zenonovych Dutsiak
idutsyak@gmail.com

The emergence of paradoxes (contradictions, the source of which is difficult to
identify) in the process of cognitive activity is a manifestation of the imperfection of
theoretical knowledge. Zeno’s paradoxes became the object of analysis of a huge
number of researchers; however, there are no generally accepted explanations of
the sources of these contradictions. In this publication, the explanation of sources of
contradictions of paradoxes “Arrow” and “Dichotomy” is proposed.

Consider the paradox “Arrow” (assume that the movement exists; in this case,
the arrow can fly from one point to another; however, during such a flight at each
time moment, the arrow is located in a separate place in space, that is, throughout
the entire flight this arrow must remain stationary, and therefore the movement
does not exist).

First of all, note that well-known fact that one body can be concerning other
body both in the condition of tranquillity, and in the condition of mechanical
movement. In this case, it is incorrect to say that during the movement the arrow is
stationary in certain places of the trajectory. In fact, only in that place where the
arrow stopped its movement, it becomes stationary. Concerning all other places of
the trajectory it is more correct to say that the arrow passes them in its movement.
It concerns also that place where the arrow began to move independently from the
bowstring of the bow, which pushed the arrow.

In this case, there will be a counterargument – like, “which can be movement
in the time moments (we designate them by points on a time scale)”? According to
this remark, it is important to pay attention to the fact that the concept of a moment
is relative. Every moment, actually is very small period, and in smaller scale each
point on a time scale will turn into a segment on such scale. At the same time, each
period during the body movement corresponds not to place that has the linear
dimensions of the body and in which this body is stationary, but that in which the
body moves from the beginning of the segment to its end. So, describing the
movement of a body, instead of the words “at such time moment the body is in such
place of space” it is more correct (and it is consistently) to say “in such small period
the body moves in such segment of trajectory”. Formulating the paradox “Arrow”
Zeno came into conflict with himself – on the one hand he approves infinite

3

mailto:idutsyak@gmail.com

divisibility of time and space, on the other hand – uses indivisible time moments
(adoption of divisibility of the moments will turn them into the periods during which
there is a movement, and in this case, the paradox will not emerge).

Consider the paradox “Dichotomy” (assume that the movement exists; in this
case, the arrow can fly from one point to another; however, before the arrow flies all
distance, it is necessary for it to fly half of this distance; before the arrow flies this
half, it is necessary for it to fly half from it, that is, a quarter; since such a condition
has to continue indefinitely reducing the distance in half, the arrow cannot start
moving, and therefore the movement does not exist). In this paradox, the
contradiction is the result of other “manipulations”.

Construct a model of the movement. Replace the passage of the same arrow
of different parts of the trajectory with a line of archers who shoot simultaneously at
different distances: the first one sends the arrow at some distance; the second is at
half of this distance, the third is at a quarter of the mentioned distance, etc. This
model (in the extreme case, in the range of sizes of the macro world) can be
implemented materially, that is, we can actually conduct such an experiment (trivial
from the point of view of everyday experience). The results of such shooting can be
summarized as follows: the possibility that the movement will begin does not
depend on distance that the body moves. This empirical generalization is
contradicted by the reasoning used in the paradox “Dichotomy” – the possibility that
the movement will begin, depends on distance that the body moves forward
(indeed, in order to start moving the body must travel the smallest distance, and
since this does not exist due to the infinite divisibility of the segment, the movement
cannot begin). The same is the source of the controversy in the “Achilles and the
Tortoise” paradox.

On the Partial Floyd-Hoare Logic Based on Predicate Complement

Ievgen Ivanov
Taras Shevchenko National University of Kyiv

ivanov.eugen@gmail.com

It is known that an inference system for the classical Floyd-Hoare logic [1, 2, 3]
becomes unsound in the case when the pre- and postconditions are allowed to have
undefined values (i.e. be specified by partial predicates) [4, 5] and Hoare triples
{p}f{q} are understood in the weak sense: “if p(d) is defined and true and f(d) is
defined, and q(f(d)) is defined, then q(f(d)) is true”.

In this talk we describe a novel modified Floyd-Hoare logic and the
corresponding inference system which is sound in this case. The resulting inference
system makes use of the operation of predicate complement which maps a partial

4

mailto:ivanov.eugen@gmail.com

predicate to a partial predicate in such a way that the resulting predicate is defined
and true on a given data if and only if the input predicate is undefined on the same
data, and the resulting predicate is undefined on a given data, if the input predicate
is defined on the same data.

We also discuss potential applications of the mentioned modified Floyd-Hoare
logic in high-level verification of software which implements engineering and
scientific computing algorithms.

References
1. R. Floyd. Assigning meanings to programs. Mathematical aspects of computer

science 19, pp. 19-32, 1967.
2. C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM

12(10) pp. 576–580, 1969.
3. K. Apt. Ten years of Hoare’s logic: A survey – part I. ACM Trans. Program. Lang.

Syst. 3(4), pp. 431–483, 1981.
4. A. Kryvolap, M. Nikitchenko, W. Schreiner. Extending Floyd-Hoare logic for

partial pre- and postconditions. In Ermolayev, V., Mayr, H., Nikitchenko, M.,
Spivakovsky, A., Zholtkevych, G., eds.: Information and Communication
Technolog in Education, Research, and Industrial Applications. Volume 412 of
Communications in Computer and Information Science. Springer, pp. 355–378,
2013.

5. A. Kornilowicz, A. Kryvolap, M. Nikitchenko, I. Ivanov. An approach to
formalization of an extension of Floyd-Hoare logic. In: Proceedings of the 13th
International Conference on ICT in Education, Research and Industrial
Applications. Integration, Harmonization and Knowledge Transfer, Kyiv,
Ukraine, May 15-18, pp. 504–523, 2017.

The Multiplicity of Logical Communities

Yaroslav Kokhan
Institute of Philosophy, National Academy of Sciences of Ukraine, Kyiv

yarkaen@gmail.com

Usually, we presuppose that any given science has a unique professional community.
But this is not the case of logic. In logic, we see at least four different professional
groups.

The first group consists of logicians-philosophers and exists from antiquity
time. The modern logical infrastructure is made by philosophers.

The second group—logicians-abstract mathematicians—arose in 19th century
and made logic a strict science. Currently we can see this group dissolves in other
professional communities: partly mathematical, partly philosophical.

5

mailto:yarkaen@gmail.com

The third group that investigates different theories of decision (recursion,
λ-conversion, abstract computing machines, verbal algorithms) has separated from
the second one and now claims to the status of a separate science—theory of
algorithms. Recent time, this field is expanded to the information science in a wide
sense. So here we meet information scientists.

And the fourth group unexpectedly consists from theorists of formal
grammars, working in mathematical linguistics. Although the founder of this field
Noam Chomsky claims that his theory does not concern to logic, as a matter of fact,
formal grammars are just a partial case of Post-Smullyan formal systems with rules
that originate from Leśniewski's theory of semantic categories.

Taking into account the above, we can conclude that it is necessary to unite all
these disparate groups of logicians into a single scientific community.

 Automated Theorem Proving in Kyiv: Historical Notes

Alexander Lyaletski
Taras Shevchenko National University of Kyiv

A historical sketch of fulfilling the Kyiv’s investigations in the automated theorem
proving field beginning from 1962, the time of starting the investigations, and ending
today is given. The main Kyiv’s results in this field and researchers who obtained
them are listed in the chronological order. At that, some connections with the similar
investigations of other researchers are indicated.

Justification Logic

Volodymyr Navrotskyi
Institute of Philosophy, National Academy of Sciences of Ukraine, Kyiv

navrotsk@gmail.com

Logic of justification / rejection is an alternative to assertion / negation logic. The
first one is used in the construction of those systems of argumentation which, in
addition to the schemes deductive logic, has the schemes of non-deductive logic.
Such schemes do not necessarily lead from the true premises to the true conclusion.
Yet they can be the reasons for the rational adoption of conclusions. What is the
criterion of the sufficiency of such reasons? What is the support of a conclusion, if it
is not the truth of its premises?

The specific logic of justification is the logic of reasoning with potentially
defeated conclusions (defeasible logic). The defeasibility of the conclusions is due in

6

mailto:navrotsk@gmail.com

particular to the fact that some inference schemes provide greater support for
conclusions than others. If the inference schemes have different force, then this fact
must be taken into account in the formulation of semantic rules expressing the
conditions for the adoption of conclusions.

What else to consider? What other factors affect the acceptability of the
conclusions? Is it the competence of the logic to answer, for example, the question
about the reasons for applying inference schemes?

As an alternative to the logic of the truth values of the sentences, justification
logic implements an argumentative approach to logic, in which conclusions of
reasoning are accepted or rejected, not simply as the result of the use of deductive
schemes, but as a result of the competition of arguments.

Program-oriented Composition-Nominative Logics

Mykola Nikitchenko
Taras Shevchenko National University of Kyiv

nikitchenko@unicyb.kiev.ua
mykola.nikitchenko@gmail.com

In the talk we discuss methodological and mathematical aspects of logics that aim to
reason with programs.

We start with the notion of generalized computable function that is presented
by a program in a certain formal language. Based directly on such formal program
models we develop program logics of various abstraction and generality levels. We
distinguish three levels of development: 1) methodological (philosophical), 2)
scientific (oriented on computing), and 3) mathematical levels.

The methodological level should provide us with general laws of development
and with a system of categories that form a skeleton of such development.

At the scientific level we follow the general development scheme and make
particularization of categories obtaining computing notions such as user, problem,
information, program, data, function, name, composition, description etc.
interconnected with such relations as adequacy, pragmatics, computability,
explicativity, origination, semantics, syntax, denotation, etc. We use triads (thesis –
antithesis – synthesis) to develop these notions later combined into development
pentads. These notions are considered in integrity of their intensional and
extensional aspects.

At the mathematical level we formalize the above-mentioned notions in
integrity of their intensional and extensional aspects paying the main attention to
the notions of 1) data, 2) function (specified by its applicative properties), and 3)
composition (considered as function combining mean). Thus, at this level we aim to

7

mailto:mykola.nikitchenko@gmail.com
mailto:nikitchenko@unicyb.kiev.ua

develop the theory of intensionalized program notions and intensionalized logics
based on this theory. The initial fragments of the theory and corresponding logics
are described. Let us admit that conventional set theory is considered as one
component of this intensionalized theory.

Though we aim to develop intensionalized logics, we also study their
extensional components which are built according to mathematical traditions. Thus,
a number of composition-nominative logics oriented on partial and non-
deterministic functions and predicates without fixed arity (quasiary functions and
predicates) over hierarchical nominative data were defined and investigated;
corresponding calculi were constructed, their soundness and
completeness/incompleteness were proved.

So, the proposed scheme of logic development at three levels seems to be
fruitful and permits to construct a hierarchy of new program-oriented composition-
nominative logics.

Semantic Properties of Five-Valued Logics

Мykola Nikitchenko, Оlena Shyshatska

In the talk the software-oriented five-valued logics of two levels (propositional five-
valued logic and the logic of five-valued quasiary predicates) are proposed and
studied. Such logics naturally arise for software systems which work with various
types of uncertainties and errors.

We describe objectives for constructing and researching five-valued logics.
Examples of five-valued functions and predicates that induce corresponding five-
valued logics are presented. In particular, an example is described that naturally
gives a five-valued set of truth values EU={T, F, e, u, eu}, where T represents “true”, F
represents “false”, e represents “error, exception”, u represents “undefined value”,
eu represents “and/or an exceptional situation and insufficient information”.
Obtained logic is called EU- logic.

Composition-Nominative Specification Languages and Logics

for the Object-Oriented Programs

Liudmyla Omelchuk
Taras Shevchenko National University of Kyiv

l.omelchuk@knu.ua

Scope of software application includes various problem domains, in particular, safety
critical. One of the steps to solve the problem of fast and efficient design of reliable

8

mailto:l.omelchuk@knu.ua

software is the use of formal methods for software development. Today one of the
absolute leaders in application programming is object-oriented programming (OOP).
Thus, in the course of construction of modern languages of program specifications it
is necessary to take into account the specificity of object-oriented programming
languages.

Among the formal specification languages that are able to specify object-
oriented programs, are independent of the development environment and can be
used to describe the behavior of the entire system as a whole, we should mention
Object-Z [Smith 2000], B [Björner, Henson 2008] and RSL [Björner, Henson 2008].
These languages are based on a traditional set-theoretical approach to program
formalization and use Zermelo-Fraenkel axiomatics. The use of such developed
formalism in relation to the problem of software development allows one to solve
effectively specific application problems. This theory is powerful enough, but at the
same time its adequacy to programming (adequate semantics, data structure, and
composition) is insufficient. These issues actualize the problem of developing of
approaches that could lead to the construction of more adequate formalisms of
program specifications. We consider one of such approaches to building axiomatic
systems of non-deterministic program specifications [Nikitchenko, Omelchuk,
Shkilniak 2006], which is based on the composition-nominative method of
refinement of the concept of program [Nikitchenko 1998].

Composition-nominative programming studies the systems at different levels
of abstraction – abstract, Boolean and nominative (attribute) levels. Systems of the
last level are quite adequate for setting of the models of data structures and
programs. Thus, the composition-nominative approach provides a single
methodological basis to formalize the concept of program specification with their
further specification to programming languages of lower level. Axiomatic theory of
nominative data [Omelchuk 2007] is developed in the spirit of the theory of
admissible sets (S. Kripke, R. Platek, J. Barwise, Yu. L. Yershov). This theory has a
number of advantages with respect to the adequacy of the programming: on the
one hand, it is enough powerful to generate computable functions over the different
data structures, on the other hand, it is not so restrictive as different versions of
constructive logic, but it is not excessively powerful and does not allow, for example,
the use of axiom of constructing the set of all subsets (compared with set theory by
Zermelo-Frankel). Moreover, this theory uses the basic data corresponding to the
methods of constructing data in programming. This can increase the adequacy of
setting data structures, functions and compositions used in programming languages,
and permits to build the systems of program specifications based on the single
conceptual framework. Basic data types of programming languages were specified in
[Nikitchenko, Omelchuk, Shkilniak 2006], in addition, the computable functions over
nominative data were defined.

9

Based on the composition-nominative method of refinement of the concept of
program [Nikitchenko 1998, Nikitchenko, Omelchuk, Shkilniak 2006], axiomatic
systems (logics) of software specifications over the nominative data [Omelchuk
2007] and sequent calculi of the composition-nominative logics over nominative
data were constructed.

References
Björner, D., & Henson, M. C. (2008). Logics of Specification Languages. EATCS

Monograph in Theoretical Computer Science. Hardcover: Springer.
Smith, G. (2000). The Object-Z Specification Language. Norwell: Kluwer Academic.
Nikitchenko, N. (1998). A Composition Nominative Approach to Program Semantics.

Techn. Report IT–TR. Technical University of Denmark, Lyngby.
Nikitchenko, N., Omelchuk, L., & Shkilniak S. (2006). Formalisms for Specification of

Programs over Nominative Data. Electronic computers and informatics (ECI
2006). Košice, Herl’any, Slovakia, 134-139.

Omelchuk, L. L. (2007). Aksiomatychni systemy specyfikacij program nad
nominatyvnymy danymy [Axiomatic Systems of Specifications of Programs
over Nominative Data]. Candidate’s thesis. Kyiv [in Ukrainian].

Teaching of the Course "Mathematical Logic" for Students of Humanities

Nataliia Rusina
Taras Shevchenko National University of Kyiv

rusina@knu.ua

Nowadays, the discipline "Mathematical Logic" should be included in the curriculum
of not only natural sciences faculties. Students of the humanitian faculties of
universities should have informatics and mathematical competencies, which include:
development of the culture of logical and algorithmic thinking; the ability to logically
justify a statement [Nikitchenko M.S., Shkilnyak S.S.]. In turn, having an elementary
complex of logical concepts will allow students to understand the disciplines such as
"Mathematics" and "Computer Science" much better.

The course "Mathematical Logic" for students of the Faculty of Philology of the
Taras Shevchenko National University of Kyiv provides for the study the following
topics:

- concept of proposition; logical operations; composed propositions;
- formulas of propositional algebras; truth tables; tautologies;
- equivalence of formulas;
- normal forms of logical functions; disjunctive normal forms and conjunctive

normal forms;

10

mailto:rusina@knu.ua

- logical consequence, based on the propositional algebra; consistency of the
set of propositions;

- sequents and sequent forms for propositional logic;
- logic of predicates; quantifiers;
- formulas of predicate logic; equivalent formulas; everywhere true formulas;

prenex formulas;
- sequents and sequent forms for predicate logic.
Studying the course "Mathematical Logic" contributes to: intellectual

development of the students; development of their logical thinking; memory
enhancement; ability to analyze, classify and generalize.

Mastering the skills of logical thinking, permanent use of logical techniques
and methods will lead to the formation of mathematical and informational
competencies for further study and professional work.

The teaching experience of the discipline "Mathematical Logic" gives grounds
to offer introduction of the same course in other educational programs of the
humanities.

References
Nikitchenko M.S., Shkilnyak S.S., (2008) Mathematical Logic and Theory of

Algorithms: A Textbook. Kyiv [in Ukrainian].

Algebras of General Non-Deterministic Predicates

O. S. Shkilniak, S. S. Shkilniak
Taras Shevchenko National University of Kyiv

sssh@unicyb.kiev.ua

Logics of general nondeterministic quasiary predicates, called GND-predicates, are
defined and investigated. These logics are program-oriented logical formalisms that
reflect such properties of programs as partiality, nondeterminism, and non-fixed
arity. GND-predicates generalize partial predicates of the relational type. The main
attention is paid to the construction of composition algebras of GND-predicates.
Compositions of GND-predicates are described, their properties are formulated. For
these predicates, such important laws of traditional logic as the law of absorption

and the law of distributivity for and & are not valid. Various types of GND-
predicates are identified. GND-predicates can be modeled as 7-value total
deterministic predicates (TD7-predicates). A 7-element algebra of truth values of
TD7-predicates is defined and all of its subalgebras are described. Each such
subalgebra induces a corresponding algebra of TD7-predicates, which then induces
the algebra of GND-predicates. This makes possible to identify a number of
important composition algebras of general nondeterministic predicates. The

11

mailto:sssh@unicyb.kiev.ua

languages of pure first-order logics of GND-predicates and their interpretations are
described. The relations of a logical G-consequence and a logical G-equivalence are
introduced. The relation of the logical G-consequence is monotonic, reflexive, and
transitive; for it the properties of the decomposition of formulas are satisfied. On the
basis of these properties, it is planned to construct calculi of sequential type for the
logic of GND-predicates.

Many-Valued Logics in the UML/OCL Model

Оlena Shyshatska
Taras Shevchenko National University of Kyiv

shyshatska@knu.ua

From information point of view existing databases contain a large amount of
incomplete, undefined, and ambiguous information (data). Such data must be
processed in a special way. Consequently, researching and constructing of new
program-oriented logics becomes important. The peculiarity of such logics is the use
of special truth values (indicating undefined value, errors, etc.).

We consider the evolution of using many-valued logic on the example of the
formal language of object constraints (OCL). The context is the UML/OCL model –
the object model in the UML notation (class diagram) with integrity constraints using
OCL expressions.

OCL is developing by the Object Management Group (OMG) of Computer
Standards Consortium. The first official version 2.0 of the language is dated 06/05/2006
[1]. Current version 2.4 is dated 02/03/2014 [2].

We illustrate the problems that appear during modeling a database.
Problem_1. Modeling the situation where the attribute value is not yet known

(for example, the email address of a customer is unknown at the time of the first
contact, but will be added later) or does not apply to this specific object instance
(e.g., the customer does not have an email address).

Problem_2. An invalid value can signal an error in the evaluation of an
expression. An example for an expression that is defined by a partial function is the
division of integers. The result of a division by zero is undefined.

In UML/OCL (OCL, v.2.0) the result of solving such problems is a special
undefined value ⊥. Each domain (set of values) of a basic type contains this value.
This usage of undefined values is well known in database modeling and querying
with SQL, in the Extended ER-Model, and in the object specification language TROLL
light. The problems with partial functions can be eliminated by including an invalid
value ⊥ into the domains of types. For all operations, we can then extend their
interpretation to total functions. The interpretation of operations is considered strict

12

mailto:shyshatska@knu.ua

unless there is an explicit statement in the following. Hence, an invalid or null
argument value causes an invalid operation result. This ensures the propagation of
error conditions.

In the version 2.3 (2012), each domain of the base type contains two special
values: ε (null-value or undefined) and ⊥ (invalid value).

The result of solving Problem_1 and Problem_2 is introduction of the values ε
and ⊥, respectively. The standard Boolean type, supplemented with special values,
defines the set of true values of the three-dimensional (older versions of OCL) and
four-dimensional logic (OCL version of 2012) UML/OCL.

We describe operations and their interpretations for basic, collection,
structural and object types.

We formally define the syntax and semantics of the expressions of OCL and
give an exact definition of the notion of context, invariance, pre-/postconditions. We
compare the using of special values in different language specifications.

Three- and four-valued logics of the OCL language are described at the
propositional level. We propose to extend the set of special values to the third value.
Its necessity is obvious in Problem_2 for evaluating the expression x/y z. As a result,
domain of type Boolean is five-valued set of values EU={T, F, e, u, eu}, where T
represents “true”, F represents “false”, e represents “error, exception”, u represents
“undefined value”, eu represents “and/or an exceptional situation and insufficient
information”. Obtained logic is called EU- logic [2].

References
1. Object Constraint Language. OMG Available Specification Version 2.0. –

2006. [online] https://www.omg.org/spec/OCL/2.0/PDF
2. Object Constraint Language. OMG Available Specification Version 2.4. –

2014. [online] https://www.omg.org/spec/OCL/2.4/PDF
3. Nikitchenko М., Shyshatska O. Semantic properties of Five-Valued Logics //

Problem of Programing. – 2018. – № 1. – P. 22-35.

Logical Foundations of Knowledge Representation and Processing in
Logical-Computing Semantic Network

Andrew Yalovets
Institute of Software Systems, National Acedemy of Sciences of Ukraine, Kyiv

yal@isofts.kiev.ua

13

mailto:yal@isofts.kiev.ua
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.0/PDF

Logical Time and Category Theory

Grygoriy Zholtkevych, Lyudmyla Polyakova
V. N. Karazin Kharkiv National University, Kharkiv

g.zholtkevych@karazin.ua, l.yu.polyakova@karazin.ua

The concept of time is one of the central concepts of philosophy and science in
whole. The trend towards the widespread use of distributed computing, which is
being observed in recent years as a technological response to the practical
achievement of the upper limit of processors performance and the development of
communication tools, has put this philosophical concept in the spotlight of
researching distributed, parallel, and concurrent computational systems. In addition,
the developing tendency to integrate cybernetic and physical systems, which has
been accelerated with developing Internet-of-Things, increased the interest in such
research.

In 1978, L. Lamport showed that the metric concept of time leads to a whole
complex of contradictions in the simulation of distributed, parallel, and concurrent
computing processes. The basis of this complex of contradictions lies in the
impossibility of exact synchronisation of timers embedded in different computing
devices.

As a solution to the problem, L. Lamport proposed to use the notion of logical
time based on the concept of logical clocks whose ticks (models of events) are
ordered in accordance with the causality relationships. In some sense, we may say
that L. Lamport based his approach on the philosophical conventionalism, whose
first proponent was the outstanding mathematician, theoretic physicist, engineer,
and philosopher of science Henri Poincaré.

These abstract concepts lead to two approaches to the design of complex
distributed systems, namely, synchronous and asynchronous design, which based on
the event- and state-based approaches respectively to modelling logical time. It is
natural to expect that two pictures based on these two mentioned approaches are
similar. In the simplest cases, these pictures are indeed similar in the sense that
there is an adjunction between the categories underlying the respective models.

Taking into account the reasoning mentioned above it is natural to determine
the following goal: to develop the general theory of logical time using category-
theoretic language and methods.

Guided by this goal, the authors obtained a number of preliminary results,
namely

(1) the category of clock structures has been defined; this category is used to
define event-based models of logical time;

(2) the category of clock structures has been studied; particularly,

14

mailto:l.yu.polyakova@karazin.ua
mailto:g.zholtkevych@karazin.ua

– the category-theoretic understanding has been found for some impor-
tant properties of logical time;

– the special representation of this category objects has been
developed;

(3) the subcategory of linear clock structures in the category of clock
structures has been defined; this category is used to define physical models of logical
time;

(4) the analogue of Szpilrajn Theorem has been proven; this result ensures
reducing general clock structure to the corresponding system of linear clock
structures;

(5) the category of schedules has been defined; this category is a bridge
between event-based and state-based modelling approaches;

(6) equivalence between the categories of linear clock structures and
schedules has been proven.

How to Create a Complete Proposional Calculation

V. Zubenko
Taras Shevchenko National University of Kyiv

15

